聚噻吩类导电聚合物的研究进展.doc

聚噻吩类导电聚合物的研究进展.doc

  1. 1、本文档共13页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
聚噻吩类导电聚合物的研究进展

聚噻吩类导电聚合物的研究进展 姓名:丁泽 班级:材化12-3 学号:1209020302 摘要 π-共轭聚合物被认为是很有发展前景的材料,因为它拥有独特的光电特性,可以被广泛的应用于太阳能电池(PSCs),电致变色器件,传感器,聚合物发光二极管(PLEDs)等各种领域。这些电活性与光活性聚合物通常是基于噻吩,吡咯,苯,芴或咔唑等芳环、芳杂环等单元的聚合物。在大量的电致变色材料中,噻吩类聚合物由于它们的高电子导电性和好的氧化还原特性,以及在可见与红外区域,快的响应时间,显著地稳定性和高的对比率而成为一类重要的电致变色共轭聚合物。更重要的是,通过聚合物链结构改动,噻吩类聚合物拥有容易的禁带可调性,可展示不同的电致变色特性。 关键词:π-共轭聚合物;电化学聚合;共聚;导电聚合物; 一、导电聚合物简介 1.1导电聚合物的分类 导电高分子材料包括结构型导电高分子材料和复合型导电高分子材料两大类型。 复合型导电高分子材料是将各种导电性物质以不同的方式和加工工艺(如分散聚合、层积复合、形成表面电膜等)填充到聚合物基体中而构成的。该类材料通常是填充高效导电粒子或导电纤维,较普及的是炭黑填充型和金属填充型。复合型导电高分子材料在技术上比结构型导电高分子材料具有更加成熟的优势。 结构型(又称作本征型)导电聚合物是指聚合物本身具有导电性或经掺杂处理后具有导电性的聚合物材料。这种高分子材料本身具有“固有”的导电性,由其结构提供载流子,一经掺杂,电导率可大幅度提高,甚至可达到金属的导电水平。如聚乙炔、聚吡咯、聚苯胺、聚噻吩、聚苯硫醚、聚对苯撑等均属于结构型导电高分子材料(如图1-1)[1]。结构型导电聚合物是目前导电聚合物研究领域的重点。 图1-1 常见共轭聚合物 结构型导电聚合物根据其结构特征和导电机理的不同又可进一步分为: 1) 载流子为自由电子的电子导电聚合物; 2) 载流子为能在聚合物分子间迁移的正负离子的离子导电聚合物; 3) 以氧化还原反应为电子转移机理的氧化还原型导电聚合物。 二、π-共轭导电聚合物的结构特征和导电机理 所谓π-共轭导电高分子是指具有长链共轭π键结构的聚合物经过化学或电化学掺杂后形成的导电材料。从结构上来说是主链上双键和单键交替的一类聚合物,这类聚合物的链上含有sp2杂化碳原子,有明显的离域π-电子重叠,给自由电子提供了离域跃迁的条件[2]。 导电高分子除了具有高分子长链结构外,还含有由“掺杂”而引起的对阴离子(p-型掺杂)或对阳离子(n-型掺杂),所以,通常导电高分子是由高分子链与非键合的阴离子或阳离子共同组成的。导电聚合物属于分子导电物质,因此导电聚合物的导电机理不同于金属和无机半导体。共轭聚合物与饱和聚合物相比,共轭聚合物能隙很小,电子亲和力较大,它们易与适当的电子受体或者电子给予体发生电荷转移,从而形成电荷转移络合物。现在一般认为导电聚合物的载流子是孤子(soliton)、极化子(polaron)和双极化子(bipolaron),而不是通常金属中的自由电子、无机半导体中的电子和空穴。 2.1导电聚合物的性质与应用 (1) 覆盖很宽的电学性能 由不同分子结构、不同制备方法得到的导电高分子的室温电导率可以在导体—半导体—绝缘体范围内(10-9~105S/cm)变化。这种宽范围的电导率变化,可以分别满足不同使用场合的不同需要。例如具有较高电导率的导电高分子可以应用在电磁屏蔽、防静电、分子导线等技术场合。具有半导体性能的导电高分子可用来制备有机二极管等。 (2) 可逆性的掺杂和脱掺杂过程 可逆性的掺杂和脱掺杂过程,这是导电高分子独特的性能之一。这一特性使得导电高分子在控制药物释放和可充放电池中的电极材料方面具有重要的作用。在掺杂/脱掺杂的过程中伴随着可逆的颜色变化,因此可以实现电致变色或光致变色。这不仅可用于光开关、信息存贮、显示器件,而且可用于军事目标的隐身伪装技术及节能玻璃窗的涂层等[1]。 在导电高分子的氧化/还原过程中,同时还伴随着掺杂离子的迁入/迁出的变化,这种掺杂离子的进出往往会导致高分子体积的变化。在该过程中所产生的这种体积变化,可以用来制造人工肌肉,微执行器和交换膜等。因此,导电聚合物特殊的结构和优异的物理化学性能使它在能源、信息、光电子器件、化学和生物传感器、电磁屏蔽、分子导线和分子器件、电致变色、光致变色、隐身防伪技术、金属防腐及气体分离膜等领域具有广泛的应用前景。 2.2 聚噻吩及其衍生物的合成 聚噻吩及其衍生物的合成大致经历了如下几个阶段:无取代聚噻吩的合成,直链烷基取代聚噻吩的合成(局部有序取代聚噻吩的合成和局部无序取代聚噻吩的合成),带有支链烷基取代聚噻吩的合成,杂原子取代聚噻吩的合成,离子型取代聚噻吩的合成等[3]。

文档评论(0)

有一二三 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

认证主体雷**

1亿VIP精品文档

相关文档

相关课程推荐