金属工艺学 第五版cp13.ppt

  1. 1、本文档共73页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
金属工艺学 第五版cp13

第三章 钢的热处理 主要内容: 1.热处理的基本概念及分类。 2.热处理加热与冷却的组织转变。 3.退火、正火、淬火、回火的原理、目的。 历史 在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。早在公元前770~前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的影响而变化。白口铸铁的柔化处理就是制造农具的重要工艺。 公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺得到迅速发展。中国河北省易县燕下都出土的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过淬火的。 历史 三国蜀人蒲元曾在今陕西斜谷为诸葛亮打制3000把刀,相传是派人到成都取水淬火的。这说明中国在古代就注意到不同水质的冷却能力了,同时也注意了油和尿的冷却能力。中国出土的西汉(公元前206~公元24)中山靖王墓中的宝剑,心部含碳量为0.15~0.4%,而表面含碳量却达0.6%以上,说明已应用了渗碳工艺。但当时作为个人“手艺”的秘密,不肯外传,因而发展很慢。 1863年,英国金相学家和地质学家展示了钢铁在显微镜下的六种不同的金相组织,证明了钢在加热和冷却时,内部会发生组织改变,钢中高温时的相在急冷时可转变为一种较硬的相。法国人奥斯蒙德确立的铁的同素异构理论,以及英国人奥斯汀最早制定的铁碳相图,为现代热处理工艺初步奠定了理论基础。 三个要素: 1. 加热到预定的温度(最高加热温度) 2. 在预定的温度下适当保温(保温时间),保温的时间与工件的尺寸和性能有关; 3. 以预定的冷却速度冷却(冷却速度)。冷却速度取决于所需的组织和性能。 热处理分类 根据热处理的目的和工艺方法的不同,热处理可分为三大类: 普通热处理:退火、正火、淬火、回火 表面热处理:表面淬火、化学热处理(渗碳、渗氮等) 其他热处理:形变热处理、超细化热处理、真空热处理、离子轰击热处理、激光热处理、电子束热处理等 常用的热处理工艺方法 2. 钢在加热时的转变 对于亚共析钢 → F+P 共 析 钢 → P 过共析钢 → P+ Fe3CⅡ 过热度与过冷度 对于加热:非平衡条件下的相变温度高于平衡条件下的相变温度; 对于冷却:非平衡条件下的相变温度低于平衡条件下的相变温度。 这个温差叫滞后度:加热转变 → 过热度 冷却转变 → 过冷度, 加热与冷却速度越大,导致过热度与过冷度越大。此外,过热度与过冷度的增大会导致相变驱动力的增大,从而使相变容易发生。 钢在加热和冷却时的相变临界点 共析钢加热转变(奥氏体形成)过程 温度: 室温 → Ac1 F + Fe3C → A 结构: 体心 复杂 面心 含碳量: 0.0218 6.69 0.77 A形成过程组织转变示意图 A形成过程组织转变示意图 亚共析钢和过共析钢加热(A形成)过程的转变 珠光体的转变:亚共析钢和过共析钢与共析钢的区别是存在先析相。其奥氏体的形成过程是先完成珠光体向奥氏体的转变,此转变过程同共析钢同。 先析相的溶解: 对于亚共析钢,平衡组织F+P,当加热到AC1以上温度时,P→A;在AC1~AC3的升温过程中,先析的F逐渐溶入A。即 P + F → A + F → A 对于过共析钢,平衡组织Fe3CⅡ+P,当加热到AC1以上时,P→A;在AC1~ACCM的升温过程中,二次渗碳体逐步溶入奥氏体中。 即P + Fe3CⅡ → A + Fe3CⅡ → A 影响奥氏体形成速度的因素 1. 加热速度的影响 加热速度越快,奥氏体化温度越高,过热度越大,相变驱动力也越大;同时由于奥氏体化温度高,原子扩散速度也加快,提高形核与长大的速度,从而加快奥氏体的形成。 2. 化学成分的影响 钢中含碳量增加,碳化物数量相应增多,F和Fe3C的相界面增多,奥氏体晶核数增多,其转变速度加快。 钢中的合金元素不改变奥氏体的形成过程,但能影响奥氏体的形成速度。因为合金元素能改变钢的临界点,并影响碳的扩散速度,且它自身也存在扩散和重新分布的过程,所以合金钢的奥氏体形成速度一般比碳钢慢,尤其高合金钢,奥氏体化温度比碳钢要高,保温时间也较长。 3. 原始组织的影响 钢中原始珠光体越细,其片间距越小,相界面越多,越有利于形核,同时由于片间距小,碳原子的扩散距离小,扩散速度加快导致奥氏体形成速度加快。同样片状P比粒状P的奥氏体形成速度快。 3. 钢在冷却时的组织转变 过冷奥氏体——高温时所形成的奥氏体冷却到A1点以下尚未发生转变的奥氏

文档评论(0)

rachel + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档