语音特征参数MFCC提取过程详解.docVIP

  1. 1、本文档共9页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
HYPERLINK "/ziyuzhao123/article/details 语音特征参数MFCC提取过程详解 一、MFCC概述 在语音处理领域里,梅尔频率倒谱(mel-frequency cepstrum简称MFC)表示一个语音的短时功率谱,是一个语音的对数功率谱在频率的一个非线性梅尔刻度上进行线性余弦转换所得。 ? ? ? ? 所有的梅尔频率倒谱系数(Mel-frequency cepstral coefficients? 简称MFCC)共同的组成一个MFC。MFCCs在Mel标度频率域提取出来的倒谱参数。倒谱和梅尔频率倒谱之间的差别是在MFC中,频带在梅尔刻度上是等间隔的,这比利用线性间隔频带的倒谱更接近于人类的听觉特性。 梅尔倒谱系数(Mel-scale Frequency Cepstral Coefficients,简称MFCC)。根据人耳听觉机理的研究发现,人耳对不同频率的声波有不同的听觉敏感度。从200Hz到5000Hz的语音信号对语音的清晰度影响对大。两个响度不等的声音作用于人耳时,则响度较高的频率成分的存在会影响到对响度较低的频率成分的感受,使其变得不易察觉,这种现象称为掩蔽效应。由于频率较低的声音在内耳蜗基底膜上行波传递的距离大于频率较高的声音,故一般来说,低音容易掩蔽高音,而高音掩蔽低音较困难。在低频处的声音掩蔽的临界带宽较高频要小。所以,人们从低频到高频这一段频带内按临界带宽的大小由密到疏安排一组带通滤波器,对输入信号进行滤波。将每个带通滤波器输出的信号能量作为信号的基本特征,对此特征经过进一步处理后就可以作为语音的输入特征。由于这种特征不依赖于信号的性质,对输入信号不做任何的假设和限制,又利用了听觉模型的研究成果。因此,这种参数比基于声道模型的LPCC相比具有更好的鲁邦性,更符合人耳的听觉特性,而且当信噪比降低时仍然具有较好的识别性能。 梅尔倒谱系数(Mel-scale Frequency Cepstral Coefficients,简称MFCC)是在Mel标度频率域提取出来的倒谱参数,Mel标度描述了人耳频率的非线性特性,它与频率的关系可用下式近似表示: ? ? ?式中f为频率,单位为Hz。下图展示了Mel频率与线性频率的关系: ? ? ? ? ? ? ?? 人耳的听觉特性与Mel频率的增长一致。与实际频率在1000Hz以下呈现线性分布,1000Hz以上呈现对数增长。 二、 MFCC的提取过程 基本流程图如下所示: ? ? ? ? ? ? ? ? ? ?? 1. 预加重 预加重处理其实是将语音信号通过一个高通滤波器: ? ? ? ? ? ? ? ? ?? 式中μ的值介于0.9-1.0之间,我们通常取0.97。预加重的目的是提升高频部分,使信号的频谱变得平坦,保持在低频到高频的整个频带中,能用同样的信噪比求频谱。同时,也是为了消除发生过程中声带和嘴唇的效应,来补偿语音信号受到发音系统所抑制的高频部分,也为了突出高频的共振峰。 2. ?分帧 先将N个采样点集合成一个观测单位,称为帧。通常情况下N的值为256或512,涵盖的时间约为20~30ms左右。为了避免相邻两帧的变化过大,因此会让两相邻帧之间有一段重叠区域,此重叠区域包含了M个取样点,通常M的值约为N的1/2或1/3。通常语音识别所采用语音信号的采样频率为8KHz或16KHz,以8KHz来说,若帧长度为256个采样点,则对应的时间长度是256/8000×1000=32ms。 3. 加窗 将每一帧乘以汉明窗,以增加帧左端和右端的连续性。假设分帧后的信号为S(n), n=0,1…,N-1, N为帧的大小,那么乘上汉明窗后??, ? ? ?W(n)形式如下: ? ? ? ? ?? 不同的a值会产生不同的汉明窗,一般情况下a取0.46 4. 快速傅立叶变换 由于信号在时域上的变换通常很难看出信号的特性,所以通常将它转换为频域上的能量分布来观察,不同的能量分布,就能代表不同语音的特性。所以在乘上汉明窗后,每帧还必须再经过快速傅里叶变换以得到在频谱上的能量分布。对分帧加窗后的各帧信号进行快速傅里叶变换得到各帧的频谱。并对语音信号的频谱取模平方得到语音信号的功率谱。设语音信号的DFT为: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?(4) ? ? ? ? ? ? ? 式中x(n)为输入的语音信号,N表示傅里叶变换的点数。 5. 三角带通滤波器 ? 三角形带通滤波器组的设计过程如下: ? ? 假设语音信号的采样频率,帧长N=256,滤波器个数K=22 ? ? 由此可得语音信号的最大频率为: ? ? ? ? ? ? ? 根据公式: ? ? ? ? ? ? ?

文档评论(0)

beifanglei + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

认证主体汪**

1亿VIP精品文档

相关文档

相关课程推荐