离心泵的结构与工作原理1讲述.ppt

  1. 1、本文档共46页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
2.1.1 离心泵的基本构造   7.轴承座   轴承座是用来支承轴的。  轴承装于轴承座内作为转动体的支持部分。轴承座的构造如图2-9所示。图中6为冷却水套,一般在轴承发热量较大、单用空气冷却不足以将热量散发时,可采用这种水冷套的形式来冷却,水套上要另接冷却水管。  轴承与轴是紧配合,装配前应先将轴承在机油中加热到120℃左右,使轴承受热膨胀后再套在轴上,轴承的拆卸一般要用专用工具。无论是安装还是拆卸轴承,都要注意按规定操作,切忌野蛮作业,以防损坏轴和轴承。 轴承座构造 1—双列滚珠轴承 2—泵轴 3—阻漏油橡皮圈 4—油杯孔 5—封板 6—冷却水套 图2-9 轴承座的构造 滚动轴承图 滚动轴承动画  滚动轴承  滑动轴承 滑动轴承 2.1.1 离心泵的基本构造  8.轴向力平衡措施  单吸式离心泵的叶轮缺乏对称性,导致工作时叶轮两侧的作用压力不相等,如图2-10所示。因此,在水泵叶轮上作用有一个推向吸入口的轴向力ΔP,必须采用专门的轴向力平衡装置来解决。  单级单吸式离心泵一般在叶轮的后盖板上钻平衡孔,并在后盖板上加装减漏环,如图2-11所示。此环的直径可与前盖板上的减漏环的直径相等。压力水经此减漏环时压力下降,并经平衡孔流回叶轮中去,使叶轮后盖板上的压力与前盖板相接近,因而就消除了轴向推力。此方法的优点是结构简单,容易实行;缺点是叶轮流道中的水流受到平衡孔回流水的冲击,使水力条件变差,从而使水泵的效率有所降低。 轴向力平衡措施 1—排出压力 2—加装的减漏环  3—平衡孔  4—泵壳上的减漏环 图2-10 轴向推力 2.1.2 离心泵的工作原理 离心泵在起动之前,应先用水灌满泵壳和吸水管道。 3个问题:   1)水是怎样在叶轮里获得速度能(动能)的?   2)水的部分速度能是如何转化为出水口的压力能的?   3)水为什么会源源不断地流进叶轮,进而使水泵能 连续出水? 离心式泵工作示意图  离心泵的工作过程  离心泵的工作过程,实际上是一个能量的传递和转换的过程。它把电动机高速旋转的机械能转化为被抽升水的动能和势能。  在这个转化过程中,必然伴随着许多能量损失,从而影响离心泵的效率。这种能量损失越大,离心泵的性能就越差,工作效率就越低。  在泵起动时,如果泵内存在空气,则叶轮旋转后空气产生的离心力也小,使叶轮吸入口中心处只能造成很小的真空,液体不能进到叶轮中心,泵就不能出水。 2.2 离心泵的性能   2.2.1离心泵的性能参数   流量Q :单位时间内由泵所输送的流体体积,即指的是体积流量,单位为m3/s或m3/h 。   扬程H :即压头,指单位重量的流体通过泵之后所获得的有效能量,也就是泵所输送的单位重量流体从泵进口到出口的能量增值。单位为mH2O。   功率N :通常指输入功率,即由原动机传到泵轴上的功率,也称为轴功率,单位为W或kW   效率η :有效功率Ne与轴功率N之比。   转速n :泵的叶轮每分钟的转数,单位是r/min。 离心泵的扬程 H = Hd + Hv   只要把正在运行中的水泵装置的真空表和压力表读数(按mH2O计)相加,就可得出该水泵的工作扬程 。   水泵扬程也可以用管道中水头损失及扬升液体高度来计算 : 图2-12 离心泵装置 离心泵的有效功率 有效功率用Ne表示 输入功率是由原动机(如电机等)传到泵轴上的功率,也称为轴功率,用符号N表示。 泵的输出功率又称为有效功率,表示单位时间内流体从泵中所得到的实际能量,它等于重量流量与扬程的乘积。  效率 离心泵的效率用来表示输入的轴功率N被流体利用的程度,即用有效功率Ne与轴功率N之比来表示效率。效率用符号η表示。 2.2.2 离心泵的特性曲线 离心泵的理论特性曲线 图2-16 离心泵的理论特性曲线 离心泵的实测特性曲线 图2-17 14SA型离心泵的特性曲线 2.3 叶轮叶型对离心泵性能的影响 前向叶型的泵所需要的轴功率随流量的增加而增加得很快。因此这类泵在运行中增加流量时,原动机超载的可能性比径向叶型的泵大得多,而后向叶型的叶轮一般不会发生原动机的超载现象。这也是后向式叶型被离心泵广泛采用的原因之一。 2.3 叶轮叶型对离心泵性能的影响 具有前向叶型的叶轮所获得的理论扬程最大,其次为径向叶型,而后向叶型的叶轮的理论扬程最小。 前向叶型的泵虽然能提供较大的理论扬程,但由于流体在前向叶型的叶轮中流动时流速较大,在扩压器中进行动、静压转换时的损失也较大,因而总效率比较低。所以,离心式泵全部采用后向叶型的叶轮,还可以避免发生电动机的超载现象

文档评论(0)

jiayou10 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:8133070117000003

1亿VIP精品文档

相关文档