电磁暂态仿真的研究进展.docxVIP

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

电磁暂态仿真的研究进展

0电磁暂态仿真的理论基础

作为电气系统模拟的重要组成部分,电气系统模拟具有现象描述的准确性、应用的普遍性和数值稳定性的特点,以及电气系统暂时模拟的基础。它的应用包括电气系统的规划、设计、运营和科学研究的各个方面。这是了解电气系统临时行为的必要工具。与机电暂态仿真不同,电磁暂态仿真在精确的电路层面上对系统元件进行建模、分析,并计算得到各种暂态响应的时域波形。这使得电磁暂态仿真从模型、算法到计算结果都有别于机电暂态仿真。电磁暂态仿真最初用于电力系统过电压计算、绝缘配合、次同步谐振、谐波分析、保护及控制装置建模、FACTS与HVDC等方面的研究,其基本理论与方法由Dommel于20世纪60年代末提出。近年来,电磁暂态仿真也被广泛用于包括大型风力发电和分布式发电在内的各种新型电能生产方式的研究中。

针对不同类型的应用,电磁暂态仿真可分为离线仿真工具和实时仿真器。离线仿真工具包括各种常见的软件包,如EMTP-RV,ATP,EMTDC,MicroTran等,它们可安装在普通PC机或工作站上,面向对时间没有严格要求的各种情况下的仿真计算,尽管这些软件都采用了高效的数值算法,但通常来说,仿真计算时间要远多于所研究暂态现象的持续时间。对于实时仿真器,除了软件技术外,还需要相关硬件装置的配合,以保证仿真时刻与外部时钟的精确同步,由此可以为各种电力系统保护与控制装置提供高度模拟现场实际的测试环境。考虑到经济性和硬件条件的限制,目前实时仿真器并不能完全取代离线的仿真工具。作为实时仿真器的代表,实时数字仿真器(RTDS)被广泛应用于工业和学术界。在国内,中国电力科学研究院和殷图公司也都开发了具有电磁暂态仿真功能的实时仿真器,并在实际系统中得到了应用。

近年来,一些新技术、新方法的出现极大地提高了电磁暂态仿真的精度和计算速度,扩展了电磁暂态仿真的应用领域。本文将首先回顾电磁暂态仿真的理论基础,进而分析电磁暂态仿真面临的问题与挑战,结合这些问题介绍了为提高仿真精度和速度所取得的研究进展,最后对今后的研究工作进行了展望。应该说明的是,精确模拟各种暂态过程离不开准确的数据、恰当的模型以及高效的算法,本文将主要介绍电磁暂态仿真算法。

1问题和挑战

1.1机电暂态仿真的基本方法

电力系统电磁暂态仿真本质上可归结为对动力学系统时域响应的求取,包括系统本身的数学模型和与之相适应的数值算法。对电力系统而言,其数学模型包括2类:一类是由系统的网络拓扑结构决定的约束方程,即KCL和KVL方程;另一类则是由系统中各元件自身特性决定的伏安关系方程。其中,第1类约束方程是代数方程,第2类方程则可能是代数方程、微分方程或非线性方程。以图1所示的电感为例,其基本伏安关系方程为式(1)给出的微分方程,在正弦交流稳态电路中式(1)退化为如式(2)所示的相量形式的代数方程:

vk-vm=Ldikmdt(1)˙Vk-˙Vm=jωL˙Ιkm(2)vk?vm=Ldikmdt(1)V˙k?V˙m=jωLI˙km(2)

式(1)为电磁暂态仿真所采用,而式(2)为机电暂态仿真所采用。

当元件的特性方程具有式(2)的代数形式约束时,电网模型可以用节点方程表示为:

YU=Ι(3)YU=I(3)

此外,系统中还存在描述发电机及励磁、调速系统动态特性的微分方程。这样,整个电力系统的数学模型可表示为一组代数—微分(DAE)方程组:

{˙x=f(x,y)0=g(x,y)(4){x˙=f(x,y)0=g(x,y)(4)

式(4)是机电暂态仿真的基础,在采用了具体的数值积分方法后,它可以联立求解整个差分后的DAE方程组,或采用交替求解的算法分别求解代数方程组和微分方程组。

与式(2)不同,式(1)并不能直接通过联立节点方程形成式(3)形式的网络方程。一种方法是先采用数值积分方法对式(1)进行差分化,得到代数形式的差分方程。以式(1)为例,应用梯形积分法后得到:

ikm(t)=Δt2L(vk(t)-vm(t))+ΙΗist(t-Δt)(5)ikm(t)=Δt2L(vk(t)?vm(t))+IHist(t?Δt)(5)

式中:ΙΗist(t-Δt)=ikm(t-Δt)+Δt2L(vk(t-Δt)-vm(t-Δt))IHist(t?Δt)=ikm(t?Δt)+Δt2L(vk(t?Δt)?vm(t?Δt))。

式(5)可以认为是一个值为Δt/(2L)的电导与历史项电流源并联的诺顿等效电路形式,如图1所示。由此再通过节点方程联立式(5)的差分方程,形成电磁暂态仿真的基本方程:

Gu=i(6)Gu=i(6)

此时式(6)的节点方程中已经包含了具体的数值积分方法,从而将系统的数学模型与数值计算方法融合在一起,这也是式(6)与式(4)的主要区别。

另一种更一般的方法则是形成标准形式的状态方程:

{˙x

您可能关注的文档

文档评论(0)

xcwwwwws + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档